AESF Research Grant - G2429 Q2, 2023 Quarterly Report PI: Brian P. Chaplin, University of Illinois at Chicago

Summary: A new student was hired on this project and has spent time learning the experimental setup and appropriate methods. Considerable time was spent on developing a method for PFAS detection in our laboratory. A new catalyst was tested for 6:2 FTS oxidation and showed significantly higher removal than Ti₄O₇ alone.

Results: Figure 1 shows that concentration profile of 6:2 FTS at different potentials using the Bi₂O₃-SnO₂ catalyst (BTO) deposited on Ti₄O₇ (i.e., BTO/Ti₄O₇). At all potentials tested, the hydraulic residence time was ~ 11s and the reported removal was obtained in a single pass through the porous electrode. At 3.6 V/SHE, the removal rate was > 3-fold higher for the BTO/Ti₄O₇ compared to Ti₄O₇ alone. Furthermore, at 4.2 V/SH, > 90% removal of 6:2 FTS was observed using BTO/Ti₄O₇. However, we still are experiencing leaching of SnO₂ into the permeate solution at potentials \geq 3.6 V/SHE. Work is underway to determine catalyst deposition methods to enhance the stability of the catalyst to achieve long term performance.

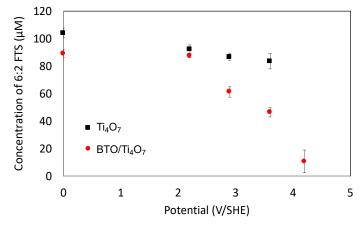


Figure 1: Concentration profile of 6:2 FTS ($C_0 = 100 \ \mu M$) as a function of potential.