
AESF Research Grant - G2429 Q1, 2023 Quarterly Report PI: Brian P. Chaplin, University of Illinois at Chicago

Summary: A new student was hired on this project and has spent time learning the experimental setup and appropriate methods. In addition, a new catalytic reactor, which was developed on another project will be tested in Q2 for the degradation or PFAS in controlled samples and electroplating wastewater. Initial results for the oxidation of PFOA with this catalyst are shown below.

Results: Figure 1 shows that concentration profile of PFOA at different potentials using three different catalysts: (1) a SnO₂ catalyst deposited by electrodeposition followed by thermal oxidation (EDT) (i.e., SnO₂-EDT/REM), (2) a Bi₂O₃ catalyst deposited by EDT (i.e., Bi₂O₃-EDT/REM), and (3) two Bi₂O₃-SnO₂ catalyst (BTO) deposited by EDT (i.e., BTO-EDT/REM). At 4.2 V/SHE, 42.4 ± 15.3%, 41.4 ± 2.6%, 59.0 ± 4.1% and >90% removal of PFOA was observed using SnO₂-EDT/REM, Bi₂O₃-EDT/REM-2, and BTO-EDT/REM-1, respectively. Overall, the results showed higher removal of PFOA for SnO₂-EDT/REM compared to Bi₂O₃-EDT/REM. However, we observed that SnO₂ was leaching into the permeate solution at potentials ≥ 3.7 V/SHE. From concentration profiles for BTO-EDT/REMs, it can be observed that presence of Bi₂O₃ improves removal of PFOA. We hypothesize that, Bi₂O₃ stabilizes SnO₂.

Figure 1: C/C₀ profile of PFOA (C₀ = 100 μ M) as a function of potential.